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ABSTRACT 

Imprecise parameter estimation of three phase induction motor offers inefficient control.  Even if many 

parameter estimation approaches are available in the literature, it is yet exigent to propose an accurate parameter 

estimation method. In this article, glowworm swarm optimization (GSO) approach based three phase induction 

motor parameter estimation (TPIMPE) is introduced. The proposed TPIMPE approach exploits the nameplate 

data and performance characteristics of the motor. GSO algorithm is used to find the optimal equivalent circuit 

parameters that minimize the digression between the estimated and the manufacturer data. The viability of the 

proposed GSO algorithm is tested on two different sample motors and compared with the classical parameter 

estimation (CPE) and particle swarm optimization (PSO) based parameter estimation approaches. The simulation 

results divulge that the proposed TPIMPE approach competently solved the parameter estimation problems, and 

outperforms the CPE and PSO approaches in both solution excellence and convergence behaviors. 
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I. INTRODUCTION 

The equivalent circuit parameters of three-phase 

induction motors are usually determined through the 

trials of no-load, locked-rotor and stator resistance.  

The parameter values determined by this classical 

method can reveal significant variations in the entire 

slip spectrum ranging from 0 to 1. Using the double-

cage model, the performance features of squirrel 

cage induction devices can be acquired. Deep and 

narrow rotor bars have the same torque-speed 

features as double-cage rotor. Single-cage rotors 

should therefore be modeled as a double-cage 

model. 

The linear parameter identification methods 

were used to determine the equivalent circuit 

parameters of a three-phase induction machine. The 

problem has also been solved by the sophisticated 

method for non-linear parameter determination [1]. 

A study on different techniques of detection of 

parameters has been discussed [2]. A simple 

technique for calculating induction motor parameters 

using IEEE standard 112 techniques has been 

discussed [3]. To determine the corresponding 

circuit parameters, no-load, blocked-rotor and 

overload experiments are performed. In this 

technique, the measuring of torque values is not 

utilized. The standard strategy to determining the 

equivalent circuit parameters of the induction motor 

from the accessible information was discussed [5]. 

These methods estimate the parameters of the 

machine model and then perform the sensitivity 

analysis with regard to the parameters of the circuit 

to match the information provided. A fresh 

parameter determination method for induction 

motors has been discussed in [6]. In this technique, 

manufacturer information such as name plate 

information and motor performance features were 

used to determine the double cage induction motor 

parameters. Online techniques for stator resistance 

and rotor resistance identification of an induction 

engine were suggested by Vukadinovic et al. [7].  

GA [8], PSO [9], and IA [10] were used to 

identify induction engine parameters. Glowworm 

swarm optimization (GSO) suggested by 

Krishnanand and Ghose is a new algorithm for 

optimizing multimodal functions [11].  It is 

mimicked from the conduct that glowworms 

exchange data with their colleagues to search for 

food.  GSO algorithm displays superior function to 

achieve the ideal solution for multimodal tasks. In 

this research paper, the GSO approach is used from 

the manufacturer information to estimate the 

corresponding circuit parameters of the three-phase 

induction motor. 

The suggested GSO technique is being tested on 

two sample motors. The parameters acquired by the 

GSO technique are then used to forecast the motors’ 

start, breakdown and full-load torques and compare 
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with the respective values provided by the 

manufacturer. 

II. PROBLEM FORMULATION 

The performance characteristics required for the 

TPIMPE method are clustered into three load 

conditions of the three-phase induction motor are as 

follows:   

 Blocked rotor condition: Power factor, stator 

current and         torque 

 Maximum torque condition: Power factor and 

torque 

 Full load condition: Power factor, stator current, 

torque and efficiency 

A.  Objective function 

The objective of the parameter estimation 

problem is to discover a set of parameters that curtail 

the error function subjected to the constraints. The 

objective function J(X) is derived from the steady 

state equations for an induction motor. For the 

derivation of the steady state equations the motor 

equivalent circuit of Figure 1 is used.  The 

impedance for the rotor circuits in Figure 1 is given 

by 
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The total impedance as seen from the motor 

terminals is defined by 
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Figure 1.  Equivalent circuit of an induction motor 

 

The motor current as a function of slip follows as 

in
Z

1V

1I   (5) 

 

The rotor circuit current as a function of slip is 

expressed by 
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From the above equations, we finally obtain the 

equations for current magnitude, power factor and 

torque: 
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Eqs. (7) – (9) form the basis for the objective 

function J(X) which is defined as a quadratic error 

function:
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B. Constraints and boundaries 

If neither constraints nor boundaries are used 

for the optimization, the result vector X may 

contain “non – physical” values, such as negative 
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values for parameters. Consequently, we define the 

following boundaries: 

                 0R,X,mX,
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Based on the nameplate data, the following three 

constraints are defined:  
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III. GLOWWORM SWARM OPTIMIZATION 

GSO algorithm, a fresh algorithm for swarm 

optimization is launched by K.N. Krishnanad and D. 

Ghose [23]. It mimics the motions of natural 

glowworms at night. The Glowworms practice in 

nature in a cluster, interacting and inter-attracting 

with each other by luciferin. If the glowworm 

releases lighter luciferin, more glowworms can be 

magnetized to move towards it. By simulating this 

natural phenomenon, combined with the features of 

natural glowworm populations, each glowworm 

moves to the strongest glowworm in its own field of 

perspective in search of the glowworm, which 

releases the strongest luciferin.  

The GSO algorithm begins by randomly 

placing the glowworms in the search space so that 

they are well dispersed. Initially, all glowworms 

contain an equal amount of luciferin. Each 

generation consists of a luciferin-update phase, 

followed by a transition-based movement phase 

.A. Luciferin update phase 

 

The luciferin update stage relies on the function 

value at the glowworm position and so, although all 

glowworms begin with the same luciferin value 

during the original generation, these values shift at 

their present roles according to the function values. 

During this phase, each glowworm adds a luciferin 

quantity proportional to the measured value of the 

sensed profile (fitness) at that point to its previous 

luciferin level. This would be the objective function 

value at that stage in the event of a function 

optimization problem. A part of the luciferin value is 

also subtracted to simulate the decline in luciferin 

over time. The luciferin update rule is defined as, 
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B.   Movement phase 

 

During this stage, each glowworm chooses to 

move towards a neighbor with a luciferin value more 

than its own using a probabilistic mechanism. This 

implies they are drawn to neighbors that are growing 

brighter. For each glowworm i the probability of 

shifting towards a neighbor j is represented by, 
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Where,       S =   δ         if dij(t)  ≥  δ 

  dij(t) otherwise 

 

C.   Local-decision range update rule 

 

When the glowworms rely on only local data to 

determine their motions, the number of peaks 

recorded is anticipated to be a powerful function of 

the radial sensor range. For example, if each agent's 

sensor ranges cover the entire workspace, all agents 

move to the optimum global point, and the local 

optima is ignored. Since we regarded that prior data 

about the objective function is not accessible, in 

order to detect different peaks, a varying parameter 

must be made of the sensor range. To this end, we 

combine each agent i with a local decision domain 

whose radial range 
i
dr is is dynamic in 

nature
i
s

i
d rr0  . The appropriate function is 

chosen to adapt the local-decision domain variety of 

each glowworm and is expressed by, 
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IV. SOLUTION METHODOLOGY 

To demonstrate the adequacy of the GSO, it is 

applied to solve the TPIMPE problem. The issue 

solving algorithm based on the suggested technique 

is as follows: 
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Step 1: Read the specifications and the 

manufacturer data of the motor. 

Step 2: Read GSO algorithm parameters. 

Step 3: Initialize initial luciferin value lo and local 

decision range ro. 

Step 4: Initialize the glowworm within the limits 

of each variable. 

Step 5: Find the objective value using Eq. (10) 

and the luciferrin value of all glowworms 

using Eq. (22). 

Step 6: Find the neighborhood glowworms 

having brighter glow and are in the local 

decision range. 

Step 7: Find the probability of glowworm moving 

towards a neighbor using Eq. (23). 

Step 8: Update the glowworm movement using 

Eq. (24) and check the limits. 

Step 9: Update the local decision range of all 

glowworms using Eq. (25). 

Step 10: Repeat the above steps 5 to 9, until 

maximum iterations are attained. 

Step 11: Display the optimal equivalent circuit 

parameters and their corresponding 

performance characteristics of the motor. 

V. EXPERIMENTAL RESULTS 

The proposed GSO based TPIMPE problem is 

tested on two sample motors. Tables 1 presents the 

information’s of the nameplate data, and the torque-

slip, power factor-slip and current slip 

characteristics of the test motors respectively. In 

order to verify the performance of the proposed 

GSO based TPIMPE, the comparisons of CPE and 

PSO approaches are provided. 

The parameters used in GSO parameters are as 

follows:  

 Luciferin decay constant = 0.97, 

 Luciferin enhancement constant = 0.97, 

 Constant parameter = 0.0005;  

 Neighborhood threshold (nt) = 4;  

 Radial range of Luciferin sensor (rs) = 

0.005; and  

 Local decision domain range (rd) = 0.0005. 

 

    Table 1. Name plate data of the test machines 
 

Specifications Motor 1 Motor 2 

Capacity 5 HP 40HP 

Voltage 400V 400V 

Current 8A 45A 

Frequency 50 Hz 50Hz 

No. of poles 4 4 

Full load slip 0.07 0.09 

Full load torque 25 Nm 190Nm 

Full load efficiency 88% 90% 

 

    

Table 2. Comparison of CPE, PSO and GSO with manufacturer data for motor 1 

 

Characteristic 
Manufacturer          

data 

CPE PSO GSO 

Estimated 

data 
Error (%) 

Estimated 

data 
Error (%) 

Estimated 

data 
Error (%) 

Starting torque (Nm) 15 14.25 5 16.0115 -6.74 16.02 -6.7 

Starting current (A) 22 21.722 1.27 22.29 -1.33 23.27 -5.53 

Maximum torque (Nm) 42 36.46 13.18 41.84 0.38 41.63 4.9 

Full load torque (Nm) 25 27.415 -9.66 27.635 -10.54 27.35 -9.76 

Full load current (A) 8 7.82 2.24 7.4 7.42 7.53 6.32 

Full load power factor 0.8 0.88 -10.09 0.829 -3.63 0.76 1.84 

Full load efficiency (%)        88 83.22 5.44 90.57 -2.93 90.45 -2.86 

 

Table 3. Comparison of CPE, PSO and GSO with manufacturer data for motor 2 

 

Characteristic 
Manufacturer          

data 

CPE PSO GSO 

Estimated 

data 
Error (%) 

Estimated 

data 
Error (%) 

Estimated 

data 
Error (%) 

Starting torque (Nm) 260 265.238 -2.01 255.68 1.66 255.72 1.68 

Starting current (A) 180 190.56 -5.8 183.89 -2.16 184.52 -2.66 

Maximum torque (Nm) 370 394.71 -6.7 380.48 -2.83 377.93 -2.56 

Full load torque (Nm) 190 178.17 6.22 172.6 9.16 170.58 10.74 

Full load current (A) 45 43.616 3.07 42.32 5.96 41.790 7.32 

Full load power factor 0.8 0.829 -3.6 0.833 -4.17 0.84 -2.46 

Full load efficiency (%)        90 90.646 -0.72 90.492 -0.55 90.63 0.58 
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Table 4 . Comparison of results for 20 runs of PSO 

and GSO approaches 

 

Values 
Motor 1 Motor 2 

PSO GSO PSO GSO 

Minimum 0.01863 0.0207 0.00247 0.0023 

Maximum 0.0285 0.0215 0.0036 0.0026 

Deviation 

(%) 

53 7.65 45.75 7.5 

                                                                                              

 

The error (e) is computed as follows: 
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The results of GSO based TPIMPE approach 

are compared with CPM and PSO techniques in 

Tables 2 and 3 for test motors 1 and 2 respectively. 

As can be seen in Tables, the performance 

characteristics of the model using the equivalent 

circuit parameters of GSO algorithm show 

remarkable agreement with the manufacturer data in 

the entire slip range. Also the error is computed for 

each performance characteristic of the motor. 

Due to the randomness in the stochastic 

approaches, these approaches are run by 20 times 

with the test motors. The statistical results obtained 

by GSO and PSO approaches are tabulated in Table 

4. These results show that the motor parameters 

estimated by the GSO algorithm lead to objective 

value less than that found by other approaches, 

which confirms that the GSO is suitable for 

estimating the global optimum solution. 

 Figure 2 illustrates the convergence features 

and demonstrates the effect of random initialization 

generated by the suggested GSO technique. These 

provide quick convergence and robustness with 

regard to the original group of the GSO algorithm. 

 
 

Figure 2. Convergence characteristics of the GSO 

for different initial group 

 

VI. CONCLUSION 

In this paper, a swarm intelligence approach, 

GSO is presented for solving the parameter 

estimation of three-phase induction motor. The GSO 

algorithm is used to minimize the digression 

between the estimated and the manufacturer data. 

The TPIMPE approach is applied on two sample 

motors and the results are compared with the 

classical and PSO based parameter estimation 

approaches. The GSO based TPIMPE approach 

provides better solution excellence and convergence 

behavior than the other approaches. This TPIMPE 

approach can be implemented for all capacities of 

the motor. From this comparative study, it can be 

concluded that the GSO approach can be used for 

multi-dimensional engineering optimization systems 

such as parameter estimation, electrical machine 

design and power system problems.  

NOMENCLATURE 

V1  Stator voltage per phase (V) 

I1, I2 Stator current and rotor current per 

phase respectively (A) 

R1  Stator resistance per phase (Ω) 

X1  Stator leakage reactance per phase 

(Ω) 
1

2
R   Rotor resistance referred to stator 

side (Ω) 
1

2
X   Rotor reactance referred to stator 

side (Ω) 

pf  Power factor 

Tmax  Pullout or maximum torque (Nm) 

ωs  Motor’s angular velocity (rad /sec) 

ηfl  Full load efficiency (%) 

Si  Discrete slip values 

Sfl  Full load slip 

c and m.f. Calculated and manufacturer value 

respectively. 

nI, npf, and nT Total number of data points 

available for current, power factor 

and torque respectively  

WI, Wpf and WT   Weighting factor for current, 

power factor and torque 

respectively 

Pfl Rated power (W) 

Prot Rotational losses (W) 

X m.f. and Xc  Manufacturer and calculated data 

of performance characteristic X 
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